An Enhanced Hybrid Method Based on Local and Frequency feature extraction for Image Copy Move Forgery Detection

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Today, due to the advent of the powerful photo editing software packages, it has become relatively easy to create forgery images. Recognizing the correctness of digital images becomes important when those images are used as evidence in legal, forensic, industrial, and military applications. One of the most common ways to forge images is copy move forgery, in which one part of the image is copied and pasted in another part of the same image. So far, various methods have been proposed for detecting copy move forgery, but these methods are not able to detect copy move forgery with different challenges of noise, rotation, scale, and detection of symmetrical images with high accuracy. In this paper, presents an enhanced hybrid method based on local and frequency feature extraction for image copy move forgery detection, which has a very high resistance to above challenges, both individually and simultaneously and has provided good identification accuracy. In this method, the combination of Discrete Wavelet Transform, Scale Invariant Feature Transform and Local Binary Pattern are used simultaneously. The forged area is chosen in such a way that at least both methods used in this proposed method have consensus about the forgery of that area. Various experiments and analyses on the MICC database show that the proposed methods, despite the above challenges and we have reached the accuracy 98.81% both separately and simultaneously, which has improved significantly compared to other methods used in this field.

Language:
English
Published:
Majlesi Journal of Electrical Engineering, Volume:15 Issue: 3, Sep 2021
Pages:
69 to 80
https://www.magiran.com/p2328727