Evaluation of the effects of 20 nm nano-iron oxide particles on fetal heart development in vivo and in vitro on NMRI mice

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

Researchers take a great interest in nanoparticles due to their unique properties and high level of performance. Yet, despite the functions of nanoparticles in various sciences and industries, their potential effects on human health especially fetal heart have not been fully investigated. The destructive effect of iron nanoparticles on the fetal heart is inevitable. Therefore, the aim of this study was to investigate the effect of iron oxide nanoparticles on fetal heart growth and development in vivo and in vitro on NMRI mice.

Materials and Methods: 

In this study, mice were divided into three groups: 1- Control: (without the effect of iron oxide), 2- Sham: (injection of solvent iron oxide and distilled water on the 9th day of pregnancy) 3- Treatment: (under the influence of different concentration of nano-iron oxide particles (10, 30, and 50 µg/kg body weight) on the 9th day of pregnancy). On day 16 of pregnancy, fetuses were taken out and their heart was removed (in vivo method) and analyzed by morphological, histological, and statistical criteria. As for in vitro method, pregnant mice were anesthetized on day 15. The embryos were removed from the body. Their hearts were separated and cultured in a culture medium containing a certain dose of iron oxide nanoparticles. Then, morphological and histological changes were examined.

Results

Injection of iron nanoparticles at concentrations of 10, 30, and 50 g/kg caused a significant increase in fetal body weight and height. However, in the results of the examinations on the heart organs, no change in the diameter, weight, wall thickness of the ventricles and atria was observed both macroscopically and microscopically.

Conclusions

In the findings of our study, increase in body length and weight of fetuses can significantly indicate the possibility of increased cell division in the fetus and the ability of these nanoparticles to pass through the placenta and transfer from mother to fetus.

Language:
English
Published:
Archives of Advances in Biosciences, Volume:12 Issue: 3, Summer 2021
Pages:
66 to 80
magiran.com/p2329650  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!