Performance based Evaluation of the BRB outrigger in reinforced concrete cores under near-field event

Author(s):
Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Advantages of high-rise buildings with reinforced concrete cores include lower construction costs, higher construction speeds, and the possibility of creating a wider outdoor architecture compared to other high-rise structural systems. As the height of the building increases, the control of lateral displacement of these structures against seismic loads is challenged. The use of arm restraint in structures with cores is one of the welcomed solutions. In this article, first, tall structures with reinforced concrete cores with and without arm restraints are analyzed and designed. The arm restraint has a buckling type brace and the effect of its position on several different levels is investigated. Next, the core modeling is performed with the help of fiber elements with nonlinear behavior for the wall and arm restraint in software. Interclass relative, lateral displacement, anchor and shear are investigated. The results show that the lowest amount of relative lateral displacement between classes is related to the placement of the arm restraint at the level of 0.75 total height from the base level. Advantages of high-rise buildings with reinforced concrete cores include lower construction costs, higher construction speeds, and the possibility of creating a wider outdoor architecture compared to other high-rise structural systems. As the height of the building increases, the control of lateral displacement of these structures against seismic loads is challenged. The use of arm restraint in structures with cores is one of the welcomed solutions. In this article, first, tall structures with reinforced concrete cores with and without arm restraints are analyzed and designed. The arm restraint has a buckling type brace and the effect of its position on several different levels is investigated. Next, the core modeling is performed with the help of fiber elements with nonlinear behavior for the wall and arm restraint in software. Interclass relative, lateral displacement, anchor and shear are investigated. The results show that the lowest amount of relative lateral displacement between classes is related to the placement of the arm restraint at the level of 0.75 total height from the base level. Advantages of high-rise buildings with reinforced concrete cores include lower construction costs, higher construction speeds, and the possibility of creating a wider outdoor architecture compared to other high-rise structural systems. As the height of the building increases, the control of lateral displacement of these structures against seismic loads is challenged. The use of arm restraint in structures with cores is one of the welcomed solutions. In this article, first, tall structures with reinforced concrete cores with and without arm restraints are analyzed and designed. The arm restraint has a buckling type brace and the effect of its position on several different levels is investigated. Next, the core modeling is performed with the help of fiber elements with nonlinear behavior for the wall and arm restraint in PERFORM-3D software. Interclass relative, lateral displacement, anchor and shear are investigated. The results show that the lowest amount of relative lateral displacement between classes is related to the placement of the arm restraint at the level of 0.75 total height from the base level.

Language:
Persian
Published:
Quranic Knowledge Research, Volume:21 Issue: 5, 2021
Page:
5
magiran.com/p2348868  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!