Hamiltonian Monte Carlo Methods for Analysing Skew GLM models

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Spatial generalized linear mixed models are used commonly for modeling discrete spatial responses. In this models the spatial correlation of the data is considered as spatial latent variables. For simplicity, it is usually assumed in these models that spatial latent variables are normally distributed. An incorrect normality assumption may leads to inaccurate results and is therefore erroneous. In this paper we model the spaial latent variables in a general random field, namely the closed skew Gaussian random field which is more flexible and includes the Gaussian random field. We propose a new algorithm for maximum likelihood estimates of the parameters. A key ingredient in our algorithm is using a Hamiltonian Monte Carlo version of the EM algorithm. The performance of the proposed model and algorithm is presented through a simulation study.

Language:
Persian
Published:
Andishe-ye Amari, Volume:26 Issue: 1, 2021
Pages:
37 to 46
https://www.magiran.com/p2352901  
سامانه نویسندگان
  • Hosseini، Fatemeh
    Corresponding Author (1)
    Hosseini, Fatemeh
    Assistant Professor statistics, Semnan University, سمنان, Iran
  • Karimi، Omid
    Author (2)
    Karimi, Omid
    Associate Professor Statistics, Semnan University, سمنان, Iran
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)