Hypercyclicity of adjoint of convex weighted shift and multiplication operators on Hilbert spaces
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
A bounded linear operator $T$ on a Hilbert space $mathfrak{H}$ isconvex, if $$|mathfrak{T}^{2}v|^2-2|mathfrak{T}v|^2+|v|^2 geq 0.$$ In this paper, sufficient conditions to hypercyclicity of adjoint of unilateral (bilateral) forward (backward) weighted shift operator is given. Also, we present some example of convex operators such that it's adjoint is hypercyclic. Finally, the spectrum of convex multiplication operators is obtained and an example of convex, multiplication operators is given such that it's adjoint is hypercyclic.
Keywords:
Language:
English
Published:
Mathematics and Computational Sciences, Volume:2 Issue: 4, Autumn 2021
Pages:
52 to 59
https://www.magiran.com/p2367262
سامانه نویسندگان
از نویسنده(گان) این مقاله دعوت میکنیم در سایت ثبتنام کرده و این مقاله را به فهرست مقالات رزومه خود پیوست کنند.
راهنما
مقالات دیگری از این نویسنده (گان)
-
Efficiency of vaccines for COVID-19 and stability analysis with fractional derivative
Mohammad Samei *, , Mohammed K. A. Kaabar, Roya Raeisi, Jehad Alzabut, Francisco Martinez Gonzalez
Computational Methods for Differential Equations, Summer 2024 -
Monotone Orbitally Nonexpansive and Cyclic Mappings in Partially Ordered Uniformly Convex Banach Spaces
Moosa Gabeleh, , Calogero Vetro*
Iranian Journal of Mathematical Sciences and Informatics, May 2024