An accurate analysis of the parameters affecting consumption and price fluctuations of electricity in the Iranian market in summer

Article Type:
Research/Original Article (دارای رتبه معتبر)
In this paper, a novel method is proposed to predict the cost of short-term hourly electrical energy based on combined neural networks. In this method, the influential parameters that play a key role in the accuracy of these systems are identified and the most prominent ones are selected. Due to the fluctuations of electricity prices during various seasons and days, these parameters do not adhere to the same pattern. In the proposed method, initially, using the SOM network, similar days are placed in close clusters. In the next stage, the temperature parameter and prices pertaining to similar days are trained separately in two MLP neural networks because of their differences concerning the range of changes and their nature. Finally, the two networks are merged with another MLP network. In the proposed hybrid method, an evolutionary search method is used to provide an appropriate initial weight for neural network training. Given the price data changes, the price amidst the previous hour has a significant effect on the prediction of the current state. In this vein, in the proposed method, the predicted data in the previous hour is considered as one of the inputs of the next stage.
3538 to 3550  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!