Extended VGG16 Deep-Learning Detects COVID-19 from Chest CT Images
Article Type:
Research/Original Article (دارای رتبه معتبر)

Coronavirus disease 2019 (COVID-19), is a rapidly spreading disease that has infected millions of people worldwide. One of the essential steps to prevent spreading COVID-19 is an effective screening of infected individuals. In addition to clinical tests like Reverse Transcription-Polymerase Chain Reaction (RT-PCR), medical imaging techniques such as Computed Tomography (CT) can be used as a rapid technique to detect and evaluate patients infected by COVID-19. Conventionally, CT-based COVID-19 detection is performed by an expert radiologist. In this paper, we will completely and utterly discuss COVID-19. We present a deep learning Convolutional Neural Network (CNN) model that we have developed to detect chest CT images with COVID-19 lesions. Afterwards, based on the fact that in an infected individual, more than one slice is involved, we determine and apply the best threshold to detect COVID-19 positive patients. We collected 5,225 CT images from 130 COVID-19 positive patients and 4,955 CT images from 130 healthy subjects. We used 3,684 CT images with COVID-19 lesions and their corresponding slices from healthy control subjects to build our model. We used 5-fold-cross-validation to evaluate the model, in which each fold contains 26 patients and 26 healthy subjects. We obtained a sensitivity of 91.5%±6.8%, a specificity of 94.6%±3.4%, an accuracy of 93.0%±3.9%, a precision of 94.5%±3.5%, and an F1-Score of 0.93±0.04.

Amirkabir International Journal of Electrical & Electronics Engineering, Volume:54 Issue: 1, Winter-Spring 2022
79 to 90
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!