Using Mott polynomials operational matrices to optimize multi-dimensional fractional optimal control problems
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
We offer a method for solving the fractional optimal control problems of multi-dimensional. We obtain a fractional derivative and multiplication operational matrix for Mott polynomials (M-polynomials). In the proposed method, the Caputo sense of the fractional derivative is applied on dynamical system. The main feature of this method is to reduce the problem into a system of algebraic equations in order to simplify it. We also show that by increasing the approximation points, the responses converge to the real answer. When the degree of fractional derivative approaches to 1, then the obtained solution approaches to the classical solution as well.
Keywords:
Language:
English
Published:
Iranian Journal of Numerical Analysis and Optimization, Volume:12 Issue: 1, Winter and Spring 2022
Pages:
201 to 227
https://www.magiran.com/p2416374
سامانه نویسندگان
مقالات دیگری از این نویسنده (گان)
-
A Modification on The Exponential Cubic B-spline for Numerical Simulation of Hyperbolic Telegraph Equations
AR. Haghighi *, F. Rahimiyan, N. Asghary, M. Roohi
International Journal of Industrial Mathematics, Spring 2023 -
ارتباط هواپیماهای بدون سرنشین با ایستگاه های پایه با استفاده از شبکه های حسگر بی سیم در عملیاتهای نظامی
، محمدمهدی نوروزیان
ماهنامه پژوهش های نوین علوم مهندسی، پاییز 1401 -
A numerical method for solving fractional optimal control problems using the operational matrix of Mott polynomials
Seyyed Ali Alavi, , *, Fahimeh Soltanian
Computational Methods for Differential Equations, Summer 2022 -
Solving Optimal Control Problems by using Hermite polynomials
*, MirKamal Mirnia
Computational Methods for Differential Equations, Spring 2020