A Comparison of Several Nonparametric Fuzzy Regressions with Trapezoidal Data

Message:
Article Type:
Research/Original Article (بدون رتبه معتبر)
Abstract:
In this paper, three methods of nonparametric fuzzy regression with crisp input and asymmetric trapezoidal fuzzy output, are compared. It analyzes the three nonparametric techniques in statistics, namely local linear smoothing (L-L-S), K- nearest neighbor Smoothing (K-NN) and kernel smoothing (K-S) with trapezoidal fuzzy data to obtain the best smoothing parameters. In addition, it makes an analysis on three real-world datasets and calculates the goodness of fit to illustrate the application of the proposed method.In this paper, we propose to analyze the three nonparametric regression techniques in statistical regression, namely local linear smoothing (L-L-S), the K- nearest neighbor smoothing (K-NN) and the kernel smoothing techniques (K-S) with trapezoidal fuzzy data.This article is organized as follows: In section 2, we have some preliminaries about fuzzy nonparametric regression and trapezoidal fuzzy data. In section 3, smoothing methods for trapezoidal fuzzy numbers are proposed and in section 4, two numerical examples are solved.
Language:
English
Published:
Journal of Applied Dynamic Systems and Control, Volume:4 Issue: 2, Summer and Autumn 2021
Pages:
85 to 94
https://www.magiran.com/p2417764  
سامانه نویسندگان
  • Tahereh Razzaghnia
    Author (1)
    Assistant Professor Department of statistics, Tehran North Branch, Islamic Azad University, Tehran, Iran
    Razzaghnia، Tahereh
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)