Testing Several Rival Models Using the Extension of Vuong's Test and Quasi Clustering
Article Type:
Research/Original Article (دارای رتبه معتبر)

The two main goals in model selection are firstly introducing an approach to test homogeneity of several rival models and secondly selecting a set of reasonable models or estimating the best rival model to the true one. In this paper we extend Vuong's method for several models to cluster them. Based on the working paper of Katayama $(2008)$, we propose an approach to test whether rival models have expected relations. The multivariate extension of Vuong's test gives the opportunity to examine some hypotheses about the rival models and their relations with respect to the unknown true model. On the other hand, the standard method of model selection provides an implementation of Occam's razor, in which parsimony or simplicity is balanced against goodness of fit. Therefore, we are interested in clustering the rival models based on their divergence from the true model to select a suitable set of rival models. In this paper we have introduced two approaches to select suitable sets of rival models based on the multivariate extension of Vuong's test and quasi clustering approach.

Journal of Iranian Statistical Society, Volume:20 Issue: 2, Autumn 2021
43 to 63
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!