Evapotranspiration Estimation at Landscape Scale by WUCOLS, PF and IPOS Methods (Karaj)

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

The constructive effects of green spaces on the quality and livability of the urban environment have been reported in many studies. Therefore, using methods that can accurately estimate the evaporation of transpiration in green space can help to reduce water loss. The purpose of estimating water demand for urban green space is also different from the purpose of determining water demand for an agricultural farm. In urban green space, the goal is to maintain good growth, appearance and acceptable plant health, while biomass production is the main goal on agricultural farms. Therefore, urban green space can typically be managed using an irrigation area that is less than the amount of water needed to produce agricultural products. Due to the limited water resources in arid areas, the use of less irrigation in urban green space can be desirable to save water consumption.

Materials and Methods

The Wucols method for estimating Water requirements in green space was developed by Castello et al. (4). They developed the Wucols water taxonomy guidelines for planting green space in California. The Wucols method estimates evapotranspiration in green space using reference evapotranspiration and a set of coefficients (Species factor, density factor and microclimate factor). PF method is the minimum acceptable irrigation for green space plants that emphasizes maintaining the beauty of the plant. In this method, the water required by green space plants is considered as a percentage of ET0 so as not to reduce their appearance and performance. In this approach, PF is a regulatory factor that is actually considered instead of Kc and multiplied by ET0, except that the emphasis is on the appearance of the plant and not on its optimal growth and yield. The IPOS method has been developed by the Government of South Australia for planning and managing water needs in public open spaces, especially sports lawns and amusement parks. In this method, the water requirement of grass in urban open space is calculated. In this method, plant transpiration evaporation (ETL) is calculated by multiplying reference transpiration evaporation factors (ET0) by grass vegetation coefficient (Kc) by plant stress factor (Kst).

Results and Discussion

The results showed that the highest rate of evapotranspiration obtained by Wucols method was 83.38 mm during 21 Jun-21 Jul. Also, the rate of transpiration evaporation during one year of the experimental period was estimated to be 556.5 mm. The results of estimation of transpiration evaporation by PF method also show the maximum amount of transpiration evaporation during 21 Jun-21 Jul and is 75.55 mm. The evapotranspiration rate during one year was estimated to be 505.9 mm. For the Ipos method, the highest rate of transpiration evaporation was estimated to be 36.38 mm during 21 Jun-21 Jul and 242.9 mm during the experimental period. Gross irrigation requirement is estimated by considering 70% irrigation efficiency for each month using all three methods. For the Wucols method, the gross irrigation need during one year was estimated to be 794.8 mm. For the PF method was 722.7 mm and for the IPOS method was 346.9 mm. According to the reported irrigation records for the study area, which is 900 mm per year, the Wucols method has the closest result to the irrigation records.

Conclusion

The results showed that the Wucols method has the best and closest estimate according to the irrigation records of the study area. The gross irrigation requirement calculated by the Wucols method during a year is 794.8 mm, which is 12% less than the gross annual irrigation requirement of the studied green space. While PF and IPOS methods determined the amount of gross demand 20 and 62% less than the annual irrigation rate in the region, respectively. The results of this study show that the Wucols method for estimating the water requirement of plants in urban green space where there is a combination of different plant species is more reliable than the PF and IPOS methods due to the diversity of species, vegetation density and different climates.

Language:
Persian
Published:
Journal of water and soil, Volume:36 Issue: 1, 2022
Pages:
1 to 15
magiran.com/p2431025  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!