Amino Acid-Assisted Solvothermal Synthesis of LiFePO4 Cathode Materials

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
In the energy storage field, lithium-ion batteries were known to be the most important approach for mitigating the environmental impacts of fossil fuels. Cathode materials are the crucial part of a lithium-ion battery, and LiFePO4 (LFP) cathode material was selected for its high voltage (3.45 V vs. Li+/Li), high theoretical capacity (170 mAh.g-1), significant cyclic stability, and environmental friendliness. On the contrary, the main downside of LFP materials is their one-dimensional lithium-ion diffusion channel at the crystallographic direction of [010]. These channels can be blocked by antisite defects, plunging the specific capacity of LFP materials. Thus, in order to reduce such impacts, having sheet-like morphologies with a significant crystallographic plane of (010) is essential. A great deal of research has been performed using a solvothermal method for the synthesis of LFP materials, and factors - as precursors, pH of the solution, temperature, time, and additives - were known to have significant roles in the structural as well as electrochemical properties of LFP materials. In this study, different amounts of the amino acids, namely glycine, and glutamic acid, were introduced in the solvothermal synthesis of LFP materials, and their respective roles in morphology and electrochemical characteristics were investigated. The self-assembled morphology of LFP particles using glycine was discussed by the formation of peptide bonds. Additionally, having another carboxylic acid group in the molecular structure of glutamic acid sustained a low pH in the solvothermal solution; therefore, the formation of self-assembled morphology could not occur during the synthesis process. Additionally, the specific capacity of the LFP/C materials after the heat treatment was discussed by Rietveld refinement investigations for determining the antisite defects.
Language:
English
Published:
Journal of Ultrafine Grained and Nanostructured Materials, Volume:55 Issue: 1, Jun 2022
Pages:
37 to 44
magiran.com/p2446553  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!