Prediction of daily evaporation using hybrid support vector regression-firefly optimization algorithm and multilayer perceptron
Article Type:
Research/Original Article (دارای رتبه معتبر)

Prediction of daily evaporation is a valuable and determinant tool in sustainable agriculture and hydrological issues, especially in the design and management of water resources systems. Therefore, in this study, the ability of artificial intelligence models of multi-layer perceptron (MLP), support vector regression (SVR), and the hybrid model of support vector regression-firefly optimization algorithm (SVR-FFA), to predict daily evaporation at Takab Station during the period 2002-2020 based on four statistical criteria have been assessed In all three models, the best scenario was the model whose input included the parameters of average temperature, minimum temperature, maximum temperature, average relative humidity, minimum relative humidity, maximum relative humidity, wind speed, and sunny hours. Among the input parameters, the sunny hours was one of the effective components on the evaporation prediction, which reduced the errors in all models. The results showed that the sixth scenario of the MLP model provided the best performance with the least error (2.18) compared to other models. It was also concluded that the sixth scenario of the SVR-FFA model had a lower error (2.20) than the other models. Among the SVR model scenarios, the sixth scenario showed the lowest error (2.27) compared to other SVR combinations. The results of this study showed that the sixth scenario of the MLP model had the best performance and the hybrid firefly algorithm improved the performance of support vector regression in estimating daily evaporation.

Iranian Journal of Rainwater Catchment Systems, Volume:9 Issue: 4, 2022
53 to 66  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!