Dosimetric Evaluation of Different Optimization Algorithms Used in Interstitial Brachytherapy of Cervical Carcinoma
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background
Conventional optimization techniques are based on the planning approach in which positions and weights are varied to generate the desired dose distribution. Inverse planning simulated annealing (IPSA) is an advanced optimization method developed to automatically determine a suitable combination of positions to design an acceptable plan. Objective
In this study, three optimization techniques namely IPSA, graphical optimization (GROPT), and geometrical optimization (GOPT) methods are compared in high-dose-rate interstitial brachytherapy of cervical carcinoma.Material and Methods
In this retrospective study, twenty computed tomography (CT) data sets of 10 cervical cancer patients treated with Martinez Universal Perineal Interstitial Template-based interstitial brachytherapy were studied. The treatment plans generated were optimized using the IPSA, and GOPT methods. The prescribed dose was 24 Gy in 4 fractions. Plans produced using IPSA, GrOPT, and GOPT techniques were analyzed for comparison of dosimetric parameters, including target coverage, homogeneity, conformity, and organs at risk (OAR) doses. Results
V100 values for IPSA, GrOPT and GOPT plans were 95.81±2.33%, 93.12±2.76% and 88.90±4.95%, respectively. The mean D90 values for the IPSA, GrOPT, and GOPT plans were 6.45±0.15 Gy, 6.12±0.21 Gy, and 5.85±0.57 Gy, respectively. Significantly lower doses of OAR were in the IPSA plans that were more homogeneous (HI=0.66). Conformity was comparatively higher in IPSA-based plans (CI=0.75). Conclusion
IPSA plans were superior and resulted in better target coverage, homogeneity, conformity, and minimal OAR doses.Keywords:
Language:
English
Published:
Journal of Biomedical Physics & Engineering, Volume:12 Issue: 4, Jul-Aug 2022
Pages:
339 to 348
https://www.magiran.com/p2462692