Global Path Planning of Quadrotor Using Reinforcement Learning
Article Type:
Research/Original Article (بدون رتبه معتبر)
This paper aims to improve the trajectory by an extended reinforcement learning based method in which a new tracking algorithm is used for mobile robot applications with low-rate control command. There are some trajectories that underactuated robots, like quadrotors, are unable to track; hence a suitable trajectory should be designed with respect to the robot's dynamics. In this paper, the initial trajectory is generated by Rapidly-exploring Random Tree Star algorithm which is not suitable for quadrotor application. Then, the initial trajectory is improved by an extension of Path Integral Policy Improvement with Covariance Matrix Adaption (PI2-CMA) algorithm. The extension includes improving tracking algorithm and controller performance considering low-rate control command. Our proposed algorithm succeeded to reduce the cost of tracking by designing safer and shorter trajectories which are more suitable for real robots. Furthermore, the results show that the proposed tracking algorithm and controller improve the performance of tracking. The hardware requirements for implementing our proposed method are a webcam and a personal computer; therefore with a low-cost implementation of the proposed method, a suitable trajectory is designed. In this paper, the initial trajectory is improved by an extension of PI2-CMA algorithm in which the trajectory tracking is performed such that reciprocating motions are avoided. Also, desired velocity and acceleration are used by controller for better tracking.
Journal of Computer and Robotics, Volume:15 Issue: 1, Winter and Spring 2022
65 to 79  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!