Sixth-order compact finite difference method for solving KDV-Burger equation in the application of wave propagations
Article Type:
Research/Original Article (دارای رتبه معتبر)
Sixth-order compact finite difference method is presented for solving the one-dimensional KdV-Burger equation. First, the given solution domain is discretized using a uniform discretization grid point in a spatial direction. Then, using the Taylor series expansion, we obtain a higher-order finite difference discretization of the KdV-Burger equation involving spatial variables and produce a system of nonlinear ordinary differential equa-tions. Then, the obtained system of a differential equation is solved by using the fourth-order Runge–Kutta method. To validate the applicability of proposed techniques, four model examples are considered. The stability and convergent analysis of the present method is worked by using von Neumann stability analysis techniques by supporting the theoretical and mathematical statements in order to verify the accuracy of the present solution. The quality of the attending method has been shown in the sense of root mean square error L2 and point-wise maximum absolute error L∞. This is used to show, how the present method approximates the exact solution very well and how it is quite efficient and practically well suited for solving the KdV-Burger equation. Numerical results of considered examples are presented in terms of L2 and L∞ in tables. The graph of obtained present numerical and its exact solution are also presented in this paper. The present approximate numeric solvent in the table and graph shows that the numerical solutions are in good agreement with the exact solution of the given model problem. Hence the technique is reliable and capable for solving the one-dimensional KdV-Burger equation.
Iranian Journal of Numerical Analysis and Optimization, Volume:12 Issue: 2, Summer and Autumn 2022
277 to 300  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!