A numerical process of the mobile-immobile advection-dispersion model arising in solute transport
Author(s):
Article Type:
Research/Original Article (بدون رتبه معتبر)
Abstract:
In the present article, to find the answer to the mobile-immobile advection-dispersion model of temporal fractional order $0< \beta \leq 1$ (MI-ADM-TF), which can be applied to model the solute forwarding in watershed catchment and flood, the effective high-order numerical process is gonna be built.To do this, the temporal-fractional derivative of the MI-ADM-TF is discretized by using the linear interpolation, and the temporal-first derivative by applying the first-order precision of the finite-difference method. On the other hand, After obtaining a semi-discrete form, to obtain the full-discrete technique, the space derivative is approximated utilizing a collocation approach based on the Legendre basis.The convergence order of the implicit numerical design for MI-ADM-TF is discussed in that is linear.Moreover, the temporal-discretized structure of stability is also discussed theoretically in general in the article.Eventually, two models are offered to demonstrate the quality and authenticity of the established process.
Keywords:
Language:
English
Published:
Mathematics and Computational Sciences, Volume:3 Issue: 3, Summer 2022
Pages:
1 to 10
magiran.com/p2487371
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یکساله به مبلغ 990,000ريال میتوانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
- حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران میشود.
- پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانههای چاپی و دیجیتال را به کاربر نمیدهد.
In order to view content subscription is required
Personal subscription
Subscribe magiran.com for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!