Automatic Machining Features Extraction from Two-Dimensional Image of Mechanical Parts with the Help of Artificial Intelligence
Article Type:
Research/Original Article (دارای رتبه معتبر)

Extracting the required information from the design file is one of the main steps in the computer aided process planning. In previous methods of extracting machining features, various methods such as graph-based method, volume analysis method, logic rules method and other methods have been used. In all the previous methods, whether traditional methods or methods based on artificial intelligence, the input data to the machine feature identification system is the output information of a computer-aided design system. Converting the output information of a computer-aided design system to input data of a machining feature identification system is faced with limitations such as the variety of format and type of data arrangement, deleting some data from the design file due to geometric interference of features, slow extraction of features due to extensive information in the design file and the limitation of identifying different types of machining features by a unity feature identification system. In the present study, using artificial intelligence techniques based on deep learning, machining features are extracted directly from the two-dimensional image of a workpiece. The image may be prepared by a computer-aided design file, or it can be taken by a camera.

Modares Mechanical Engineering, Volume:22 Issue: 10, 2022
173 to 179  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!