Development of the integrated MARS-PSO and ELM-PSO models for estimating the compressive strength of concrete in circular concrete columns confined with FRP polymer fibers

Author(s):
Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Many columns that have been built in the past need to be repaired and strengthened for various reasons such as errors during construction, design errors, changes in the use of the building, changes in regulations, strong beam-weak column conditions and also injuries from accidents. Today, various methods for strengthening and improving structures, especially concrete columns, have become popular. One of the most common methods for reinforcing columns is to confine them using polymer fiber composites. The advantages of this method include increasing the axial and lateral bearing capacity of the column, increasing the compressive and tensile strength of the concrete member and increasing the ductility of the member. The mechanical properties of the concrete confined with FRP polymer fibers may be required for the purpose of design and rehabilitation. Artificial intelligence methods are among the modeling methods that have shown great power to coordinate with engineering problems. The aim of this study is to use multivariate adaptive regression spline (MARS) and extreme learning machine (ELM) artificial intelligence models to estimate the compressive strength of concrete in circular concrete columns confined with FRP polymer fibers. In addition, in order to improve the accuracy of these models, the particle swarm Optimization algorithm (PSO) is used in combination with these models and the accuracy of the models is evaluated to estimate the resistance. The results show that in overall, the used artificial intelligence models estimate the compressive strength of FRP- confined columns more accurately than the existing analytical models. In particular, the integrated MARS-PSO model has better performance compared to other models used, so that this model has a correlation coefficient of 0.9972 in the training stage and 0.9961 in the experimental stage. Also, the combination of PSO algorithm with MARS and ELM models improves their accuracy by 6.13 and 4.68 percent, respectively.

Language:
Persian
Published:
Sharif Journal Civil Engineering, Volume:38 Issue: 2, 2022
Pages:
117 to 129
magiran.com/p2497353  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!