High-performance hydroxyapatite scaffold combined with selenium and reduced graphene oxide for bone regeneration applications

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Bone tissue engineering require approaches to provide a suppression/promotion environment for bone growth. Scaffold biomaterials have profound regulatory effects on the functionality of mesenchymal stem cells (MSCs). In the present study, three-component bioceramic of selenium/reduced graphene oxide/hydroxyapatite (Se/RGO/HA) was developed and its performance to repair bone defects was compared to HA. The Se/RGO/HA nanocomposite scaffold was synthesized using the chemical bath technique, characterized by X-ray diffraction spectra, Field emission scanning electron microscope, Energy dispersion X-ray spectrometer, and Fourier transform infrared spectroscopy analyses. Human adipose-derived MSCs (hAD-MSCs) were used to investigate the in-vitro osteogenic properties of Se/RGO/HA scaffold. The effect of combined scaffold on cell proliferation was analyzed by MTT assay. Cell adhesion behaviors was evaluated using optical microscopy and SEM. The osteogenic properties of Se/RGO/HA scaffold was examined by the measurement of alkaline phosphatase (ALP) activity and western blotting technique. The hAD-MSCs proliferation for HA, Se/RGO/HA nanocomposite were 2±0.1 and 1.1±0.05 respectively. The Se/RGO/HA nanocomposite had cytotoxic effect of on the KHOS-240S cancer cells . Additionally, good cell attachment and osteoblast-like morphology were characterized on the designed scaffold. The ALP activity and mineralization potential of cells seeded on Se/RGO/HA were higher than those seeded on HA. The Osteocalsin protein for Se/RGO/HA and HA were 64±1 and 12±0.1 respectively. Furthermore, the expression of Osteocalcin, a bone-specific protein, was synergistically increased by incorporation of Se and RGO into HA. In conclusion, the presence of RGO inside the Se could significantly increase positive effects of HA on the osteogenic potential of hAD-MSCs.

Language:
English
Published:
Iranian journal of chemical engineering, Volume:19 Issue: 1, Winter 2022
Pages:
66 to 76
magiran.com/p2497840  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!