A Novel Detector based on Compressive Sensing for Uplink Massive MIMO Systems
Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Massive multiple-input multiple-output is a promising technology in future communication networks where a large number of antennas are used. It provides huge advantages to the future communication systems in data rate, the quality of services, energy efficiency, and spectral efficiency. Linear detection algorithms can achieve a near-optimal performance in large-scale MIMO systems, due to the asymptotic orthogonal channel property. But, the performance of linear MIMO detectors degrades when the number of transmit antennas is close to the number of receive antennas (loaded scenario). Therefore, this paper proposes a series of detectors for large MIMO systems, which is capable of achieving promising performance in loaded scenarios. The main idea is to improve the performance of the detector by finding the hidden sparsity in the residual error of the received signal. At the first step, the conventional MIMO model is converted into the sparse model via the symbol error vector obtained from a linear detector. With the aid of the compressive sensing methods, the incorrectly detected symbols are recovered and performance improvement in the detector output is obtained. Different sparse recovery algorithms have been considered to reconstruct the sparse error signal. This study reveals that error recovery by imposing sparse constraint would decrease the bit error rate of the MIMO detector. Simulation results show that the iteratively reweighted least squares method achieves the best performance among other sparse recovery methods.

Language:
English
Published:
Journal of Information Systems and Telecommunication, Volume:10 Issue: 4, Oct-Dec 2022
Pages:
249 to 256
magiran.com/p2501839  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!