Presenting the Development of the Beneish Model with Emphasis on Economic Features using Neural Network, Vector Machine, and Random Forest

Article Type:
Research/Original Article (دارای رتبه معتبر)
As the business process becomes more complex, financial statement distortion risk increases. In this regard, researchers have been looking for models to detect fraud in financial statements. Beneish (1997) predicted earning manipulation using financial ratios and accruals. Since economic pressure is presented as a manager’s external motivation to manipulate income, the Beneish model is developed based on economic variables, including Inflation Rate, GDP Growth, Exchange Rate, and Economic Growth Rate. The fitting of the random forest, vector machine, and neural network was used to fit the extended model. The results show that the accuracy of the random forest model is 99.96% which is more than the neural network and vector models, 96.1% and 93.62%, respectively. The final results show that the developed model is more accurate than the basic Beneish model. The results show that economic factors play a significant role in fraudulent financial reporting which should be considered when analyzing financial reporting.
Iranian Journal of Accounting, Auditing and Finance, Volume:6 Issue: 4, Autumn 2022
15 to 28  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!