Identification of gene signature in RNA-Seq hepatocellular carcinoma data by Pareto-optimal cluster algorithm

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Aim

This study aimed to detect gene signatures in RNA-sequencing (RNA-seq) data using Pareto-optimal cluster size identification.

Background

RNA-seq has emerged as an important technology for transcriptome profiling in recent years. Gene expression signatures involving tens of genes have been proven to be predictive of disease type and patient response to treatment.

Methods

Data related to the liver cancer RNA-seq dataset, which included 35 paired hepatocellular carcinoma (HCC) and non-tumor tissue samples, was used in this study. The differentially expressed genes (DEGs) were identified after performing pre-filtering and normalization. After that, a multi-objective optimization technique, namely multi-objective optimization for collecting cluster alternatives (MOCCA), was used to discover the Pareto-optimal cluster size for these DEGs. Then, the k-means clustering method was performed on the RNA-seq data. The best cluster, as a signature for the disease, was found by calculating the average Spearman's correlation score of all genes in the module in a pair-wise manner. All analyses were performed in the R 4.1.1 package in virtual space with 100 Gb of RAM memory.

Results

Using MOCCA, eight Pareto-optimal clusters were obtained. Ultimately, two clusters with the greatest average Spearman's correlation coefficient scores were chosen as gene signatures. Eleven prognosticgenes involved in HCC's abnormal metabolism were identified. In addition, three differentially expressed pathways were identified between tumor and non-tumor tissues.

Conclusion

These identified metabolic prognostic genes help us to provide more powerfulprognostic information and enhance survival prediction for HCC patients. In addition, Pareto-optimal cluster size identification is suggested for gene signature in other RNA-Seq data.

Language:
English
Published:
Gastroenterology and Hepatology From Bed to Bench Journal, Volume:15 Issue: 4, Autumn 2022
Pages:
387 to 394
https://www.magiran.com/p2516798