Practical Differential Fault Analysis on CRAFT, a Lightweight Block Cipher
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Differential fault analysis, a kind of active non-invasive attack, is an effective way of analyzing cryptographic primitives that have lately earned more attention. In this study, we apply this attack on CRAFT, a recently proposed lightweight tweakable block cipher, supported by simulation and experimental results. This cipher accepts a 64-bit Tweak, a 64-bit plaintext, and a 128-bit key to produce a 64-bit ciphertext. We assume that the target implementation of CRAFT does not use countermeasures in this paper. The considered fault model in the initial phase of this paper is a single-bit, but random nibble-injected fault, where we first present the fault injection attack as a simulation and then report on how to retrieve the round sub-keys. Next, we use frequency glitch as a fault injection technique in the experimental phase. This part aims to produce a single fault at a nibble in a specific round of the CRAFT. Following our statistical analysis and according to the simulation findings, we can reduce the key space to 30.28 and 24.37 bits, respectively, by using 4 and 5 faults. The experimental section also identifies the location of random faults injected by the hardware mechanism.
Language:
English
Published:
International Journal of Information Security, Volume:14 Issue: 3, Oct 2022
Pages:
21 to 31
https://www.magiran.com/p2520385