Salinity stress is one of the important factors in decreasing the rate of growth and changing physiologic and metabolic processes of plants. In the present study to investigate the effect of salinity stress on physiological and biochemical performances and also gene expressions of Artemisia absinthium plant, an experiment was conducted with three level of salinity (0, 75, and 15 Mmol NaCl) in a completely randomized design with three replications under greenhouse conditions. Results showed that salinity stress decreased the rate of growth parameters in the plants including shoot length, root length, wet shoot weight, wet root weight, dry shoot weight, and dry root weight. Also, salinity decreased the levels of potassium, calcium, magnesium, and iron ions while increasing sodium levels in the plants. Increased salinity stress increased levels of proline, malondialdehyde, phenolic compounds, and activities of some antioxidant enzymes while it led to protein reduction in the plants under study. The expression of CYP71AV1 and ADS genes reduced to minimum at 150 Mmol and 75 Mmol NaCl treatments, respectively leading to reduced level of artemisinin in the Artemisia absinthium plants. According to the findings of this study, it might be argued that in its attempt to confront salinity stress induced fromsodium chloride, Artemisia absinthium employs the system of increased level of antioxidant enzymes activity, osmotic potential regulators, and phenolic compounds. Also, decreased expression of ADS gene can be an effective factor in reducing artemisinin contents in Artemisia absinthium.
- حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران میشود.
- پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانههای چاپی و دیجیتال را به کاربر نمیدهد.