A Simple Gibbs Sampler for learning Bayesian Network Structure
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
The aim of this paper is to learn a Bayesian network structure for discrete variables. For this purpose, we introduce a Gibbs sampler method. Each sample represents a Bayesian network. Thus, in the process of Gibbs sampling, we obtain a set of Bayesian networks. For achieving a single graph that represents the best graph fitted on data, we use the mode of burn-in graphs. This means that the most frequent edges of burn-in graphs are considered to indicate the best single graph. The results on the well-known Bayesian networks show that our method has higher accuracy in the task of learning a Bayesian network structure.
Keywords:
Language:
English
Published:
Journal of Data Science and Modeling, Volume:1 Issue: 2, Winter and Spring 2023
Pages:
87 to 97
https://www.magiran.com/p2525996
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با ثبت ایمیلتان و پرداخت حق اشتراک سالانه به مبلغ 1,390,000ريال، بلافاصله متن این مقاله را دریافت کنید.اعتبار دانلود 70 مقاله نیز در حساب کاربری شما لحاظ خواهد شد.
پرداخت حق اشتراک به معنای پذیرش "شرایط خدمات" پایگاه مگیران از سوی شماست.
اگر عضو مگیران هستید:
اگر مقاله ای از شما در مگیران نمایه شده، برای استفاده از اعتبار اهدایی سامانه نویسندگان با ایمیل منتشرشده ثبت نام کنید. ثبت نام
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
- حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران میشود.
- پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانههای چاپی و دیجیتال را به کاربر نمیدهد.
In order to view content subscription is required
Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!