Estimation of Solar Radiation using Optimized Artificial Neural Network-Genetic Algorithm and Meteorological Parameters
Article Type:
Research/Original Article (دارای رتبه معتبر)
Solar radiation is one of the key factors in the fields of agriculture, hydrology and meteorology and plays an essential role in various physical, biological and chemical processes such as snowmelt, evaporation, photosynthesis and crop production. Thus, accurate estimation of this parameter is very important. Accordingly, in this study, the amounts of daily solar radiation were estimated using artificial neural network and artificial neural network-genetic algorithm in six stations of Ardabil province including Ardabil, Bilehsavar, Sareyn, Germi, Meshgin Shahr and Nir. The data used in this research include maximum, minimum and average temperature, relative humidity and wind speed of the mentioned stations in a time period of two years (2017-2018) which are used in eight different combinations as input data of the models. Also, statistical indices of correlation coefficient, root mean square error, Wilmot index, Kling-Gupta efficiency and Taylor diagrams have been used to compare the obtained results. Generally, the obtained results indicated that among the artificial neural networks, the model of Bilehsavar station and among the artificial neural network-genetic algorithms, the model of Ardabil station recorded the most accurate results. Also, MLP-VIII model in Bilehsavar station with a correlation coefficient of 0.856, root mean square error of 0.319 (MJ/m2d), Kling-Gupta efficiency of 0.659 and Wilmot index of 0.893 have the best performance in the utilized models. Therefore, it is recommended to use artificial neural network-genetic algorithm method for estimation of solar radiation.
Iranian Journal of Soil and Water Research, Volume:53 Issue: 7, 2022
1545 to 1562  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!