Development of SUAP toolkit for performing uncertainty quantification and sensitivity analysis in fuel performance modeling
Probabilistic uncertainty and sensitivity analysis is frequently recommended for safety and reliability assessment of computer simulations. For this purpose, SUAP has been developed, and its latest version is capable of working on analysis results obtained using five well-known nuclear codes (i.e. FRAPCON, FRAPTRAN, FEMAXI, MCNP, and COBRA). SUAP provides support to properly quantify input uncertainties as to probability distributions and appropriate dependency functions. Using the Monte-Carlo sampling method, random combinations of different uncertain input parameters are generated and used to make input files for the corresponding code applied for the modeling. To quantify uncertainties, SUAP determines the variation range for each specific output parameter at any chosen time and/or location. Moreover, sensitivity analysis is accomplished based on the Spearman correlation. In this study, in order to evaluate SUAP applicability, UQ&SA for fuel performance modeling of VVER-1000 fuel rods using FRAPCON code has been accomplished. Acquired results exhibit the possible range of uncertainties in fuel centerline temperature, as well as the importance of different uncertain input parameters on that.