مدل سازی اکسیژن محلول با استفاده از روش یادگیری عمیق و روش های پیش پردازنده
نویسنده:
نوع مقاله:
مقاله پژوهشی/اصیل (دارای رتبه معتبر)
چکیده:
آلودگی آب یک مشکل بزرگ جهانی است که به ارزیابی مداوم و تجدیدنظر در سیاست منابع آبی در همه سطوح احتیاج دارد. اکسیژن محلول (DO) یکی از مهم ترین شاخص های کیفیت آب است. در مطالعه حاضر، پارامتر کیفی اکسیژن محلول در آب با استفاده از روش هوشمند حافظه طولانی کوتاه مدت (LSTM) بر پایه روش های پیش پردازنده تبدیل موجک گسسته (DWT) و روش تجزیه مد تجربی کامل (CEEMD) در دو حالت زمانی و مکانی در پنج ایستگاه متوالی بر روی رودخانه ساواناه مورد بررسی قرار گرفت. نتایج حاصل از تحلیل مدل ها قابلیت و کارایی بالای روش به کاررفته را در تخمین میزان اکسیژن محلول در آب به خوبی نشان داد. از طرفی دیگر روش های پیش پردازنده باعث بهبود نتایج شدند. هم چنین در بررسی های انجام شده مشاهده شد که نتایج حاصل از تجزیه براساس تبدیل موجک در مدل سازی مکانی، به میزان دو درصد و هم چنین تجزیه مد تجربی در مدل سازی زمانی، به میزان 15 درصد میزان خطای RMSE را کاهش داد. بهترین حالت ارزیابی برای داده های آزمون با استفاده از تجزیه مد تجربی در حالت مدل سازی زمانی مربوط به یک روز قبل با مقادیر 977/0=DC، 988/0=R و 017/0=RMSE به دست آمد. هم چنین در مدل سازی مکانی جهت تخمین اکسیژن محلول در ایستگاه سوم نیز مشخص شد نتایج حاصل از ورودی های پارامتر اکسیژن محلول در یک روز قبل ایستگاه دوم و دو روز قبل ایستگاه اول بهترین نتیجه را دارا می باشد.
کلیدواژگان:
زبان:
فارسی
صفحات:
890 تا 983
لینک کوتاه:
magiran.com/p2533371
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یکساله به مبلغ 750,000ريال میتوانید 50 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
- حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران میشود.
- پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانههای چاپی و دیجیتال را به کاربر نمیدهد.
In order to view content subscription is required
Personal subscription
Subscribe magiran.com for 50 € euros via PayPal and download 50 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!