A Novel Enhanced Gorilla Troops Optimizer Algorithm for Global Optimization Problems

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Researchers in many fields, such as operations research, computer science, AI engineering, and mathematical engineering, extra, are increasingly adopting nature-inspired metaheuristic algorithms because of their simplicity and flexibility. Natural metaheuristic algorithms are based on two essential terms: exploration (diversification) and exploitation (intensification). The success and limitations of these algorithms are reliant on the tuning and control of their parameters. When it comes to tackling real optimization problems, the Gorilla Troop Optimizer (GTO) is an extremely effective algorithm that is inspired by the social behavior of gorilla troops. Three operators of the original GTO algorithm are committed to exploration, and the other two operators are dedicated to exploitation. Even though the superiority of GTO algorithm to several metaheuristic algorithms, it needs to improve the balance between the exploration process and the exploitation process to ensure an accurate estimate of the global optimum. For this reason, a Novel Enhanced version of GTO (NEGTO), which focuses on the correct balance of exploration and exploitation, has been proposed. This paper suggests a novel modification on the original GTO to enhance the exploration process and exploitation process respectively, through introducing a dynamic controlling parameter and improving some equations in the original algorithm based on the new controlling parameter. A computational experiment is conducted on a set of well-known benchmark test functions used to show that NEGTO outperforms the standard GTO and other well-known algorithms in terms of efficiency, effectiveness, and stability. The proposed NEGTO for solving global optimization problems outperforms the original GTO in most unimodal benchmark test functions and most multimodal benchmark test functions, a wider search space and more intensification search of the global optimal solution are the main advantages of the proposed NEGTO.

Language:
English
Published:
International Journal of Industrial Engineering and Productional Research, Volume:34 Issue: 1, Mar 2023
Page:
8
magiran.com/p2538442  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!