Classification of Normal and Abnormal Heart Sounds Using Machine Learning Techniques

Article Type:
Research/Original Article (دارای رتبه معتبر)

Phonocardiography (PCG) signals provide valuable information about the heart valves .These auditory signals can be useful in the early diagnosis of heart diseases. Automatic heart sound classification has a promising potential in the field of heart pathology. In this research, a new method based on machine learning techniques is proposed for discriminating normal and abnormal heart sounds. In this method, first, the heart sounds are segmented into 4 main parts: S1, S2, systole and diastole segments. From these segments, statistical and time-frequency features are extracted for classification. Before classification, the distinctive features are selected using two approaches. In the first approach, the feature selection is accomplished using particle swarm optimization algorithm (PSO). In the second approach, we use Sequential Forward Feature Selection (SFFS) method. The proposed method was evaluated on the Physionet 2016 Challenge database using 10-fold cross-validation method. In this database, the number of normal and abnormal PCG signals are not balanced. Therefore, in this paper, the synthetic minority over-sampling technique (SMOTE) is applied to produce balanced data. The evaluation results showed that the proposed method can distinguish the normal heart sounds from abnormal ones with accuracy of 98/03% and sensitivity and specificity of 97.64%, 98.43%respectively.

Iranian Journal of Biomedical Engineering, Volume:16 Issue: 3, 2023
271 to 287  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!