ParDeeB: A graph framework for load forecasting based on parallel DeepNet branches
Article Type:
Research/Original Article (دارای رتبه معتبر)
Recently, energy demand forecasting has emerged as a signi cant area of researchbecause of its prominent impact on greenhouse gases (GHGs) emissionand global warming.The problems of load forecasting are characterized by complexand nonlinear nature and also long-term historical dependency. Up to now,several approaches from statistical to computational intelligent have been appliedin this research led. The literature agrees with the fact that deep learningapproach is more capable in dealing with these characteristics among existingapproaches. However, the recent state-of-the-art deep network models are notrobust against di erent historical dependency. In this study, we propose a graphframework based on parallel DeepNet branches to tackle this challenge. Thisframework consists of multi parallel branches in which di erent kind of networkscan be incorporated. The parallel recurrent branches represent the historical dependencyof determinants individually and this leads to better performance incase of di erent historical dependency in data. In this case study, the performanceof the proposed model is examined through a comparison study withthe state-of-the-art deep network models. The comparison resulted in that theproposed framework can improve the load forecasting by a signi cant marginon average.
803 to 813  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!