استفاده از تکنیک های مشابهت رشته ای برای تشخیص فعالیت های روزانه در خانه های مجهز به شبکه حسگر دودویی

پیام:
نوع مقاله:
مقاله پژوهشی/اصیل (دارای رتبه معتبر)
چکیده:

در سیستم هایی که افراد در فعالیت های روزانه خود به مراقبت ویژه نیاز دارند، الگوریتم های تشخیص فعالیت انسانی کاربرد دارند. روش های مختلف یادگیری ماشین، از جمله مدل مخفی مارکوف و روش های مرتبط به آن، به طور گسترده ای برای حل مساله تشخیص فعالیت انسانی استفاده شده اند. در کارهای قبلی، روش های مبتنی بر مدل مخفی مارکوف از فرض استقلال شرطی برای محاسبه احتمال مشاهدات استفاده شده است. در این تحقیق، به جای فرض استقلال شرطی، یک مدل احتمالی جدید برای فضای رشته ها، بر اساس تاب خوردگی زمان پویا و فاصله لونشتاین وزنی پیشنهاد شده است. مدل احتمالی پیشنهادی، که با یک مدل مخفی شبه مارکف ترکیب شده، روی یکی از مجموعه داده های در دسترس اعمال شده است. نتایج حاصله نشان می دهد که استفاده از مدل پیشنهادی دقت شناسایی فعالیت های روزانه را به میزان قابل توجهی اقزایش می دهد. کلیه کدها و داده ها مقاله حاضر، از طریق پیوند github.com/ashnik1353 در دسترس هستند.

زبان:
فارسی
در صفحه:
6
لینک کوتاه:
https://www.magiran.com/p2556185 
سامانه نویسندگان
از نویسنده(گان) این مقاله دعوت می‌کنیم در سایت ثبت‌نام کرده و این مقاله را به فهرست مقالات رزومه خود پیوست کنند. راهنما
مقالات دیگری از این نویسنده (گان)