استفاده از تکنیک های مشابهت رشته ای برای تشخیص فعالیت های روزانه در خانه های مجهز به شبکه حسگر دودویی
در سیستم هایی که افراد در فعالیت های روزانه خود به مراقبت ویژه نیاز دارند، الگوریتم های تشخیص فعالیت انسانی کاربرد دارند. روش های مختلف یادگیری ماشین، از جمله مدل مخفی مارکوف و روش های مرتبط به آن، به طور گسترده ای برای حل مساله تشخیص فعالیت انسانی استفاده شده اند. در کارهای قبلی، روش های مبتنی بر مدل مخفی مارکوف از فرض استقلال شرطی برای محاسبه احتمال مشاهدات استفاده شده است. در این تحقیق، به جای فرض استقلال شرطی، یک مدل احتمالی جدید برای فضای رشته ها، بر اساس تاب خوردگی زمان پویا و فاصله لونشتاین وزنی پیشنهاد شده است. مدل احتمالی پیشنهادی، که با یک مدل مخفی شبه مارکف ترکیب شده، روی یکی از مجموعه داده های در دسترس اعمال شده است. نتایج حاصله نشان می دهد که استفاده از مدل پیشنهادی دقت شناسایی فعالیت های روزانه را به میزان قابل توجهی اقزایش می دهد. کلیه کدها و داده ها مقاله حاضر، از طریق پیوند github.com/ashnik1353 در دسترس هستند.
-
الگوی دودویی محلی بهبود یافته چند مقیاسی به منظور استخراج ویژگی و طبقه بندی مرجانهای دریایی
زهرا نظمی، محمدحسین شکور*،
نشریه ماشین بینایی و پردازش تصویر، پاییز 1402 -
ارائه روش انتخاب ویژگی مبتنی بر خوشه بندی در مسئله تشخیص هرزنامه
وحید نصرتی*،
نشریه مدیریت اطلاعات، بهار و تابستان 1401