Assessment of the Spectral Parameters’ Effects of Near-Field Earthquake Records containing Coherent Velocity Pulse on the Analytical Structure of the Bi-Normalized Response Spectra
This study aims to investigate the analytical scheme of both the bi-normalized acceleration response spectrum and the bi-normalized tripartite response spectrum according to an ensemble of near-field strong ground motion records in the forward directivity conditions. For this purpose, the horizontal components of the ground acceleration time history were considered and a group of 16 ground motion pairs were selected, which have been recorded during two great earthquakes occurred in California, namely the Northridge (1994) and the Imperial Valley (1979). Also, the analytical scheme of the normalized acceleration response spectrum and the normalized tripartite response spectrum corresponding to a symbolic single-degree-of-freedom system have been compared with the related bi-normalized acceleration response spectra. It should be noted that the identification of near-field strong ground motion records is usually recognized by their physical characteristics such as peak ground acceleration (PGA), peak ground velocity (PGV), and the relatively short period process of energy release. Many strong ground motions have been recorded in less than 20 km from the fault rupture surface during intensive powerful earthquakes. In this case, the most famous earthquake tremors are the Imperial Valley (1979), Loma Prieta (1989), Landers (1992), and Northridge (1994) in California, plus the Kobe (1995) in Japan, Erzincan (1992), as well as Kocaeli (1999) in Turkey. Moreover, there are two very strong records, which were related to the Tabas (1978) and Bam (2003) earthquakes in Iran. The ensemble of the selected earthquake records in this research includes near-field ones that contain various tectonic occurrences. The main physical characteristics of the chosen records cover a wide range of the frequency content and strong ground motions duration as well as various high seismological amplitudes. The related values of the peak ground acceleration and velocity are numerically high. Generally, the peak ground velocity (PGV) is often viewed as a better indicator of the earthquake record damage potential than the peak ground acceleration (PGA). The large velocity pulses evident in the related plots can be viewed as damaging features. Moreover, the earthquake record damage potential also depends on how much dynamic ground displacement occurs during these velocity pulses. Referred to apparent physical influences caused by strong faulting mechanisms, the presence of high-amplitude velocity pulses is one of the most important characteristics of near-field records, which can be registered in a time-history domain. In general, these pulses appear as wave-shaped features with high amplitudes and long periods, which have a compound and continuous shape. Distinct powerful velocity pulses are resulted corresponding to high-amplitude acceleration pulses and spikes usually with a less than 1.5 second time-domain and also high-amplitude and short-time spikes with 0.2 to 0.3 second time-step in the spectral windows of the horizontal parallel and perpendicular components with respect to the fault rupture couture. These processes would essentially cause an enormous amount of the kinetic energy of strong ground motions to get released in the time-range of compound coherent and long-term velocity pulses in the related time history. In order to investigate these effects on the configuration of the aimed response spectrum, the velocity pulse time step, the ratio of corresponding kinematic energy of both two horizontal components, peak ground acceleration (PGA), and peak ground velocity (PGV) were considered.According to the performed computational assessments in this research, it was resulted that the bi-normalized response spectrum by the basic criterion of predominant period has a monotonous configuration and would get fewer effects due to variation of the notified spectral parameters.
-
Evaluation of the Robustness of Tall Buildings with Bundled Tube Resistant Skeleton using Fragility Curves
Mahyar Roshani,
Amirkabir Journal of Civil Engineering, -
Probabilistic Evaluation of the Fragility of Diagrid Structures with and without Internal Moment Frames and Various Perimeter Geometric Configurations
Mahyar Roshani, Afshin Meshkat-Dini*,
Quranic Knowledge Research,