An attributed network embedding method to predict missing links in protein-protein interaction networks

Article Type:
Research/Original Article (دارای رتبه معتبر)
Predicting missing links in noisy protein-protein interaction networks is an essential~computational method. Recently, attributed network embedding methods have been shown to be significantly effective in generating low-dimensional representations of nodes to predict links; in these representations, both the nodes'features and the network's topological information are preserved. Recent research suggests that models based on paths of length 3 between two nodes are more accurate than models based on paths of length 2 for predicting missing links in a protein-protein interaction network. In the present study, an attributed network embedding method termed ANE-SITI is recommended to combine protein sequence information and network topological information. In addition, to improve accuracy, network topological information also considers paths of length 3 between two proteins. The results of this experiment demonstrate that ANE-SITI outperforms the compared methods on various~protein-protein interaction (PPI) networks.
Journal of Algorithms and Computation, Volume:55 Issue: 1, Jun 2023
79 to 99  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!