Hybrid Filter-Wrapper Feature Selection using Equilibrium Optimization

Article Type:
Research/Original Article (دارای رتبه معتبر)
The topic of feature selection has become one of the hottest subjects in machine learning over the last few years. The results of evolutionary algorithm selection have also been promising, along with standard feature selection algorithms. For K-Nearest Neighbor (KNN) classification, this paper presents a hybrid filter-wrapper algorithm based on Equilibrium Optimization (EO). With respect to the selected feature subset, the filter model is based on a composite measure of feature relevance and redundancy. The wrapper model consists of a binary Equilibrium Optimization (BEO). The hybrid algorithm is called filter-based BEO (FBBEO). By combining filters and wrappers, FBBEO achieves a unique combination of efficiency and accuracy. In the experiment, 11 standard datasets from the UCI repository were utilized. Results indicate that the proposed method is effective in improving the classification accuracy and selecting the best optimal features subsets with the least number of features.
Journal of Algorithms and Computation, Volume:55 Issue: 1, Jun 2023
101 to 122
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!