Investigating the effect of the new ECAP process on the hardness of the post ECAP Al7075 samples
One of the main methods for strengthening and increasing the hardness of the materials is the use of the severe plastic deformation (SPD) processes. Equal channel angular pressing (ECAP) method is one of the SPD methods. Two challenging issues including (1) the very high required punching force, and (2) the deflection of the punch restrict the application of the method in industry. In this paper, a new design of ECAP process is proposed, which in addition to reducing the punching force, eliminates the deflection problem. The main purpose of this paper is to investigate the effect of the process parameters including process temperature (100- 200-300) ° C, lubrication (dry and graphite) and the number of ECAP passes (1-2-3) on the hardness of 7075 aluminum material and determining their optimal levels. The Taguchi design is used for design of experiment and the S/N ratio is used to find the optimal levels of the parameters and to maximize the hardness of the material. Based on the analysis of the variance, the process temperature and the number of ECAP passes have the greatest effect on the hardness of the post ECAP samples. However, the lubrication condition has not a significant effect on the hardness of the post ECAP samples in all temperatures.