Infinite minimal half synchronizing

Author(s):
Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

‎‎Synchronized systems‎, ‎has attracted much attention in 1986 by F. Blanchard and G. Hansel, and extension of them has been of interest since that notion was introduced in 1992 by D. Fiebig and U. Fiebig. ‎One was via half synchronized systems; that is‎, ‎systems having half synchronizing blocks‎. ‎In fact‎, ‎if for a left transitive ray such as $\ldots x_{-1}x_{0}m$ and $mv$ any block in $X$ one has again $\ldots x_{-1}x_{0}mv$ a left ray in $X$‎, ‎then $m$ is called half synchronizing. ‎A block $m$ is minimal (half-)synchronizing, ‎whenever $w \varsubsetneq m$‎, ‎$w$ is not (half-)synchronizing‎. ‎Examples with $\ell$ minimal (half-)synchronizing blocks has been given for $0\leq \ell\leq \infty$‎.‎‎ ‎‎‎To do this we consider a $\beta$-shift and will replace 1 with some blocks $u_i$‎ ‎to have countable many new systems‎. ‎Then‎, ‎we will merge them‎.‎

Language:
English
Published:
Journal of Mahani Mathematical Research, Volume:12 Issue: 2, Summer and Autumn 2023
Pages:
105 to 113
https://www.magiran.com/p2583777  
سامانه نویسندگان
  • Shahamat، Manouchehr
    Author
    Shahamat, Manouchehr
    Assistant Professor Dynamic Systems, Dezful Branch, Islamic Azad University, دزفول, Iran
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)