On the graphs with distinguishing number equal list distinguishing number

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has an vertex labeling with $d$ labels that is preserved only by the trivial automorphism. A list assignment to $G$ is an assignment $L = \{L(v)\}_{v\in V (G)}$ of lists of labels to the vertices of $G$. A distinguishing $L$-labeling of $G$ is a distinguishing labeling of $G$ where the label of each vertex $v$ comes from $L(v)$. The list distinguishing number of $G$, $D_l(G)$ is the minimum $k$ such that every list assignment to $G$ in which $|L(v)| = k$ for all $v \in V (G)$ yields a distinguishing $L$-labeling of $G$. In this paper, we determine the list-distinguishing number for two families of graphs. We also characterize graphs with the distinguishing number equal the list distinguishing number. Finally, we show that this characterization works for other list numbers of a graph.

Language:
English
Published:
Journal of Mahani Mathematical Research, Volume:12 Issue: 2, Summer and Autumn 2023
Pages:
411 to 423
https://www.magiran.com/p2583797  
سامانه نویسندگان
  • Alikhani، Saeid
    Corresponding Author (1)
    Alikhani, Saeid
    Professor Department of Mathematics, Yazd University, University of Yazd, یزد, Iran
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)