Effect of Adding Several Graphite-Based Materials to Urea Formaldehyde Adhesive on Thermal and Mechanical Properties of MDF board
This study aimet at to use modified graphite materials as a multifunction additive in the UF resin for improving the properties of medium density fiberboard (MDF). For this purpose expanded graphite EG was synthesized from graphite using the Tsai et al (2011) method. Then, as-synthesized EG was intercalated with manganese dioxide by Schwarz et al (1995) method and converted to MnO2-EG. Any additive was added to the urea formaldehyde resin in three doses of 1, 2 and 3% to make the relevant MDF panels with 750 kg/m3 nominal density. During the pressing time, the tT100oc parameter (time to reach temperature100○C) of the middle layer of the board under the influence of the additive was determined by a chromium-nickel-based thermocouple. The treatment of MnO2-EG3 (amount of 3% modified expanded graphite) showed the greatest effect in reducing tT100°C of the middle layer of the board by 22%. In addition, the elastic modulus increased by 68% as a result of this treatment. In addition, the elastic modulus increased by 68% as a result of this treatment. G and EG additives showed a higher degree of internal adhesion than that of MnO2-EG additive. In this regard, EG2 and EG3 treatments showed a 42% increase in internal adhesion and G2 treatment showed a 40% increase in internal adhesion. The effect of EG2 treatment in improving SW24 was greater than other treatments, so that it caused a 19% decrease compared to the control.
-
Synthesis of G-C3N4/Mxene Composite for Enhanced Photocatalytic Degradation of Eosin Y Dye in Aqueous Solutions Under Visible Light
Mehran Bijari, Afsaneh Shahbazi *, Vahid Vatanpour,
Journal of Sustainable Earth Trends, Oct 2024 -
Optimization of Photocatalytic Degradation of Phenol Via Fe3O4@SiO2@TiO2 Magnetic Nanocomposite by Response Surface Methodology
Saeed Aghel, Nader Bahramifar *, , Mahdi Tanha Ziyarati
Journal of Water & Wastewater,