A Study Toward Automatic Identification of Renal Stone Composition in Single-energy or Ultra-low-dose CT Scan Using Deep Neural Networks

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background

Dual-energy computed tomography (DECT) scan is a non-invasive method for the in vivo identification of renal stone composition. However, DECT scanners have several demerits, including high cost, low accessibility, and high radiation dose to patients.

Objectives

The present study aimed to investigate the efficacy of deep neural networks in the classification of renal stone types using single-energy CT imaging. The Taguchi method was used for the optimization of hyperparameters.

Patients and Methods

A total of 146 pure renal stone samples were first surgically collected from the patients. The stones were then inserted into a Rando phantom and scanned using a DECT scanner. An ultra-low-dose CT scan was acquired to determine the stone position prior to the DECT scan. The result of chemical analysis was used as the gold standard for determining the stone composition throughout the study. Several neural networks, including ResNet-50, ResNet-18, GoogLeNet, and VGG-19, were used to classify the stone images into three composition groups, including uric acid, calcium oxalate, and cystine. Moreover, the Taguchi method was employed to optimize the network hyperparameters. The signal-to-noise ratio (SNR) was also analyzed to determine the optimal arrangement.

Results

In this study, CT scans of 53 uric acid, 55 calcium oxalate, and 38 cystine stones, with diameters of 1 - 3 mm, were acquired. The deep learning findings showed that the ResNet-18 network had the highest accuracy for 120-kVp and 135-kVp CT scanning, while ResNet-50 performed better in 80-kVp CT scanning. The ResNet-50 network showed the best performance of all networks in predicting stone types in 80-kVp scanning, as indicated by its high sensitivity, specificity, and precision.

Conclusion

The present results indicated that our deep learning approach could be used for the in vivo determination of renal stone types. Moreover, low-dose or ultra-low-dose single-energy CT scanning ismorewidely accessibleand safer in terms of radiation exposure.

Language:
English
Published:
Iranian Journal of Radiology, Volume:20 Issue: 2, Apr 2023
Page:
3
magiran.com/p2590884  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!