Investigating the functional conditions of heavy water condenser electrolysis used in Isfahan Zero Power Reactor

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
The quality of heavy water performance in atomic power plants as a substitute for neutron particles depends on its degree of purity. The concentration of heavy water in the nuclear industry is of significant importance. The Heavy Water Reactor of Isfahan, in the nuclear sector, includes a heavy water purification and condensation system. This was launched at the same time as the reactor was built. For electrolysis of water and its isotopes, such as heavy water, it requires a lot of electrical energy, so it should be economical and workable. Several parameters contribute to the optimization of the operating conditions of the electrically operated apparatus. These parameters can control the number of exhaust gases, energy efficiency, and polarization in electrolysis processes. But the practical study of the role of various parameters on heavy water electrolyzer performance is very costly. Therefore, in this paper, the role of some parameters, such as tube temperature and electrolyte concentration, is modeled on the functional conditions of the electrolyzer by dynamic equations. And by introducing a variety of voltage losses in the electrolyzer system, an equation for the electrolysis voltage is obtained. The electrolyzer voltage equation is selected as the target function. The role of the parameters mentioned in energy efficiency optimization has been investigated. The electrolyzer is alkaline and contains 7% w/w potassium carbonate electrolytes. This electrolyzer has condensed heavy water with a purity of 90% to 99.8%. The results of modeling show that by increasing the concentration of potassium carbonate electrolyte by 10%, the electrolyzer polarization can be reduced (15.4%) and increase the electrical energy efficiency by up to 18.3%. Also, the results of the modeling show that by increasing the temperature to 25 C°, the electrolysis will perform better and reduce the polarization and energy consumption by 4%.
Language:
Persian
Published:
Journal of Nuclear Science and Tehnology, Volume:44 Issue: 4, 2023
Pages:
39 to 45
magiran.com/p2591382  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!