Prediction of Shear Strength of Reinforced Concrete Deep Beams Using Neuro-Fuzzy Inference System and Meta-Heuristic Algorithms
Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
It is generally accepted that the shear strength of Reinforced Concrete (RC) deep beams depends on the mechanical and geometrical parameters of the beam. The accurate estimation of shear strength is a substantial problem in engineering design. However, the prediction of shear strength in this type of beams is not very accurate. One of the relatively accurate methods for estimating shear strength of beams is Artificial Intelligence (AI) methods. Adaptive Neuro-Fuzzy Inference System (ANFIS) was presented as an AI method. In this study, the efficiency of ANFIS incorporating meta-heuristic algorithms for predicting shear strength of RC beams was investigated. Meta-heuristic algorithms were used to determine the optimum parameters of ANFIS for providing the efficient models of the prediction of the RC beam shear strength. To evaluate the accuracy of the proposed method, its results were compared with those of other methods. For this purpose, the parameters of concrete compressive strength, cross-section width, effective depth, beam length, shear span-to-depth beam ratio (a/d), as well as percentage of longitudinal and transverse reinforcement were selected as input data, and the shear strength of reinforced concrete deep beam as the output data. Here, K-fold validation method with k = 10 was used to train and test the algorithms. The results showed that the proposed model with second root mean square error of 25.968 and correlation coefficient of 0.914 is more accurate than other methods. Therefore, neural fuzzy inference system with meta-heuristic algorithms can be adopted as an efficient tool in the prediction of the shear strength of deep beams.
Language:
English
Published:
Civil Engineering Infrastructures Journal, Volume:56 Issue: 1, Jun 2023
Pages:
137 to 157
magiran.com/p2593127  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!