Noise elimination in automatic detection of epileptic seizures by wavelet transform using feature selection algorithm

Article Type:
Research/Original Article (بدون رتبه معتبر)
One of the most important symptoms of epilepsy is convulsions, whose detailed analysis is performed by electroencephalography (EEG) signal. Electroencephalogram, as a clinical tool to illustrate the electrical activities of the brain accurately, provides an appropriate method for diagnosing epilepsy disorders, which plays an important role in identifying this disease, especially seizures. Seizures resulting from epilepsy may have negative physical, psychological, and social consequences such as loss of consciousness and sudden death. With timely and correct identification of epilepsy, its effect can be treated with medicine or surgery. In this thesis, a brief review of the methods of identifying epilepsy using EEG signal analysis along with the separation of epileptic signals from healthy and normal signals has been done. Methods based on EEG analysis, from non-linear methods of signal processing, provide much better results due to the properties of signal dynamics
Journal of Artificial Intelligence in Electrical Engineering, Volume:11 Issue: 44, Winter 2023
15 to 24  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!