A shifted fractional-order Hahn functions Tau method for time-fractional PDE with nonsmooth solution

Article Type:
Research/Original Article (دارای رتبه معتبر)
In this paper, a new orthogonal system of nonpolynomial basis functions is introduced and used to solve a class of time-fractional partial differential equations that have nonsmooth solutions. In fact, unlike polynomial bases, such basis functions have singularity and are constructed with a fractional variable change on Hahn polynomials. This feature leads to obtaining more accurate spectral approximations than polynomial bases. The introduced method is a spectral method that uses the operational matrix of fractional order integral of fractional-order shifted Hahn functions and finally convertsthe equation into a matrix equation system. In the introduced method, no collocation method has been used, and initial and boundary conditions are applied during the execution of the method. Error and convergence analysis of the numerical method has been investigated in a Sobolev space. Finally, some numerical experiments are considered in the form of tables and figures to demonstrate the accuracy and capability of the proposed method.
Iranian Journal of Numerical Analysis and Optimization, Volume:13 Issue: 4, Autumn 2023
672 to 694
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!