Improving the performance of the FCM algorithm in clustering using the DBSCAN algorithm

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
The fuzzy-C-means (FCM) algorithm is one of the most famous fuzzy clus-tering algorithms, but it gets stuck in local optima. In addition, this algo-rithm requires the number of clusters. Also, the density-based spatial of the application with noise (DBSCAN) algorithm, which is a density-based clus-tering algorithm, unlike the FCM algorithm, should not be pre-numbered. If the clusters are specific and depend on the number of clusters, then it can determine the number of clusters. Another advantage of the DBSCAN clus-tering algorithm over FCM is its ability to cluster data of different shapes. In this paper, in order to overcome these limitations, a hybrid approach for clustering is proposed, which uses FCM and DBSCAN algorithms. In this method, the optimal number of clusters and the optimal location for the centers of the clusters are determined based on the changes that take place according to the data set in three phases by predicting the possibility of the problems stated in the FCM algorithm. With this improvement, the values of none of the initial parameters of the FCM algorithm are random, and in the first phase, it has been tried to replace these random values to the optimal in the FCM algorithm, which has a significant effect on the convergence of the algorithm because it helps to reduce iterations. The proposed method has been examined on the Iris flower and compared the results with basic FCM   algorithm and another algorithm. Results shows the better performance of the proposed method.
Language:
English
Published:
Iranian Journal of Numerical Analysis and Optimization, Volume:13 Issue: 4, Autumn 2023
Pages:
763 to 774
magiran.com/p2634436  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!