Diagnosis of Bearing Defects based on the Analysis of Vibration Images Using the RKEM SIFT Descriptor Method

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Diagnosing bearing defects is one of the basic tasks in machine health monitoring, because bearings are critical components of rotating machines. This paper proposes a new method for detecting defects in bearings based on a combination of feature extraction algorithms in which a two-dimensional signal is used. Different from other classical one-dimensional signal processing methods, the proposed method of this paper converts one-dimensional vibration signals into two-dimensional signal (image), then image processing methods are used to analyze the image signal in order to classify the defects that have occurred. arrive at the bearing. Converted images from vibration signals often have specific texture characteristics, and the texture of each defective category is different. In addition, each descriptor extracts spatial features. Some features are weak and others are strong. In this article, the method of removing additional key points of SIFT (RKEM SIFT) is used. In addition, for each descriptor, the best features are selected using the non-linear principal component analysis method. Finally, the selected features are combined and four classification methods are applied to achieve the best classification performance and after comparison, the best classification method is selected. The performance of the proposed algorithm is evaluated on the standard bearing data set of Case Western Reserve University. The simulation results show that the proposed method performs better than other methods of fault finding of rolling bearings.
Language:
Persian
Published:
Journal of Southern Communication Engineering, Volume:13 Issue: 50, 2023
Pages:
67 to 84
magiran.com/p2637010  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!