A survey on vulnerability of deep neural networks to adversarial examples and defense approaches to deal with them

Message:
Article Type:
Review Article (دارای رتبه معتبر)
Abstract:

Nowadays the most commonly used method in various tasks of machine learning and artificial intelligence are neural networks. In spite of their different uses, neural networks and Deep neural networks (DNNs) have some vulnerabilities. A little distortion or adversarial perturbation in the input data for both additive and non-additive cases can be led to change the output of the trained model, and this could be a kind of DNN vulnerability. Despite the imperceptibility of the mentioned disturbance for human beings, DNN is vulnerable to these changes. Creating and applying any malicious perturbation named “attack”, penetrates DNNs and makes them incapable of doing the duty assigned to them. In this paper different attack approaches were categorized based on the signal applied in the attack procedure. Some approaches use the gradient signal for detecting the vulnerability of DNN and try to create a powerful attack. The other ones create a perturbation in a blind situation and change a portion of the input to create a potential malicious perturbation. Adversarial attacks include both black-box and White-box situations. White-box situation focuses on training loss function and the architecture of the model but black box situation focuses on the approximation of the main model and dealing with the restriction of the input-output model request. Making a deep neural network resilient against attacks is named “defense”. Defense approaches are divided into three categories. One of them tries to modify the input, the other one makes some changes in the developed model and also changes the loss function of the model. In the third defense approach some networks are first used for purification and refinement of the input before passing it to the main network. Furthermore, an analytical approach was presented for the entanglement and disentanglement representation of inputs of the trained model. The gradient is a very powerful signal usually used in learning and an attacking approaches. Besides, adversarial training is a well-known approach in changing a loss function method to defend against adversarial attacks. In this study the most recent research on the vulnerability of DNN through a critical literature review was presented. Literature and our experiments indicate that the projected gradient descent (PGD) and AutoAttack methods are successful approaches in the l2 and l∞  bounded attacks, respectively. Furthermore, our experiments indicate that AutoAttack is much more time-consuming than the other methods. In the defense concept, different experiments were conducted to compare different attacks in the adversarial training approaches. Our experimental results indicate that the PGD is much more efficient in adversarial training than the fast gradient sign method (FGSM) and its deviations like MIFGSM and covers a wider range of generalizations of the trained model on predefined datasets. Furthermore, AutoAttack integration with adversarial training works well, but it is not efficient in low epoch numbers. Aside from that, it has been proven that adversarial training is time-consuming. Furthermore, we released our code for researchers or individuals interested in extending or evaluating predefined models for standard and adversarial machine learning projects. A more detailed description of the framework can be found at https://github.com/khalooei/Robustness-framework .

Language:
Persian
Published:
Signal and Data Processing, Volume:20 Issue: 2, 1402
Pages:
113 to 144
magiran.com/p2640676  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!