Exploring Common Symptoms in Patients with Respiratory Allergies Using K-Means Algorithm in the North-East of Iran in 2012–2015
As a common disease among people of almost any age, allergic rhinitis has many adverse effects such as lowering the quality of life and efficiency at work or school. Considering these conditions and the collection of large amounts of data, the present research was conducted on allergic rhinitis and asthma patients' data to extract the common symptoms of these diseases using cluster analysis and the k-means algorithm.
The present cross-sectional research was conducted in Mashhad city. The inclusion criteria were affliction with one or two respiratory allergy diseases diagnosed by an allergy specialist through clinical history taking and physical examination. A researcher-made checklist was used in the present study for data collection. Then, the K-means algorithm's cluster analysis model was conducted to extract clusters (WEKA software (3, 6, 9)).
Overall, 1,231 patients met the inclusion criteria. The result of the Cluster analysis consisted of 1: Cluster 1 in allergic rhinitis consisted of 702 patients, and cluster 2 consisted of 382 patients. 2: 46 asthma patients were assigned to cluster 1 and 23 to cluster 2. 3: Also, 60 asthma and allergic rhinitis patients were assigned to cluster 1 and 19 to cluster 2. The most common symptoms in all patients were rhinorrhea, sneezing, nasal congestion, and itchy nose.
Overall, Salsola kali was the most common allergen in allergic rhinitis and asthma patients. Also, the most common symptoms in patients are rhinorrhea, sneezing, itchy nose, and nasal congestion. This study can help physicians diagnose allergic rhinitis and asthma in geographical areas with a high prevalence of Salsola kali.
-
A Comparative Study of the Usability of Academic Social Networks
Mohammadhosein Hayavihaghighi, Mohammadhossein Pourasad, Mohammad Dehghani *
Journal of Clinical Research in Paramedical Sciences, Jun 2024 -
Optimization of the Results of the ML-Based GMDH Algorithm in order to Increase the Accuracy of Walnut Pollen Detection and Horizontal Optical Depth through the TLBO Algorithm
Mehdi Amiri *, Farzad Amiri, Mohammadhossein Pourasad, Seyfollah Soleimani
Iranian Journal of Remote Sencing & GIS, -
The Development of a minimum data set to implement a national sports injury Registration system in Iran
MOJTABA Abolhasannezhad, MohammadHosein Alizadeh *, , Hooman Monoonejad
Journal for Research in Sport Rehabilitation, -
An Intelligent Diagnosis of Liver Diseases using Different Decision Tree Models
Mitra Montazeri, Mahdieh Montazeri *, , MohammadJavad Zahedi, Amin Beigzadeh
Journal of Kerman University of Medical Sciences, Mar-Apr 2023