Evaluation of nickel adsorption from plating wastewater by nanographite

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

Industrial plating wastewater contains various types of detrimental heavy metals in high concentrations. One of this toxic metal is Nickel that its discharge into the surface waters and soil is considered as an environmental problem. Hence removing of this metal from wastewaters is crucial and vital for protecting the environment and human health. Applying of nanotechnology in elimination of environmental contaminants is one of the methods which attracted a great deal of attention in recent years. In present research, nanographite was utilized as efficient adsorbent in order to remove Ni ions.

Material and methods

In order to investigate the adsorption process, nanographite with a purity of 99.9% and a specific surface area of ​​18-24 m2/g and a plate morphology was prepared from Pishgaman Iranian Nanomaterials Company and used as an adsorbent. Also, the wastewater used in the experiments was prepared from one of the plating workshops in Tehran, which contained 765 mg/L of nickel and a pH of about 1. The parameters of pH, time and amount of adsorbent were evaluated. In each experiment, one of the parameters was considered variable and the other two parameters were considered constant. The amount of nickel was determined before and after each test.

Results and discussion

In this study, the parameters including pH, adsorption time and adsorbent dosage were investigated as effective factors on Ni adsorption process. In order to analyze the adsorption mechanism, the obtained results were examined by the Langmuir and Fruendlich isotherm models. In addition, pseudo-first-order and pseudo-second-order models were studied to investigate adsorption kinetics. According to the results, the Ni uptake by nanographite was enhanced significantly with increasing of the pH value from 5 to 7. Thus the pH of 7 was determined as optimum pH for Ni removal. Investigations also showed that increasing the time up to the first 80 minutes had a relatively good effect on nickel adsorption by the nanoparticle, and after that the adsorption almost reached equilibrium. Finally, it was observed that in a constant time, increasing the amount of adsorbent led to an increase in adsorption, and to achieve the maximum adsorption of nickel, the amount of 2g was chosen for the adsorbent. Based on the obtained results, 97.52% primary nickel was adsorbed by nanographite. Results also revealed that the data were best fitted to the Fruendlich models. After determining the amount of nickel adsorption at different times, the resulting data were analyzed by the kinetic model.Kinetic studies also indicated that the adsorption data were described well by pseudo-second-order model.

Conclusion

Examining the results showed that pH plays an important role in the adsorption process and the adsorption rate increases with increasing time until the equilibrium time is reached. One of the effective factors is the amount of adsorbent, which has a direct effect on adsorption. Following the Freundlich isotherm in this research indicates that the adsorption sites in the adsorbent have different energies. Also, the pseudo-second-order model in adsorption kinetics refers to the process of chemical adsorption in addition to physical adsorption.

Language:
Persian
Published:
Environmental Sciences, Volume:21 Issue: 2, 2023
Pages:
169 to 182
magiran.com/p2644299  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!